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Abstract

Neural Text-to-Speech (TTS) synthesis is able to generate high-
quality speech with natural prosody. However, these systems
typically require a large amount of data, preferably recorded in
a clean and noise-free environment. We focus on creating target
voices from low quality public recordings and our findings show
that even with a large amount of data from a specific speaker, it
is challenging to train a speaker-dependent neural TTS model.
In order to improve the voice quality, while simultaneously re-
ducing the amount of data required, we introduce meta-learning
to adapt the neural TTS front-end. We propose three approaches
for multi-speaker systems: (1) a lookup-table-based system, (2)
a speaker representation derived from the Personalized Hey Siri
(PHS) system, and (3) a system with no speaker encoder. Re-
sults show that: i) By using a significantly smaller number of
target voice recordings, the proposed system based on embed-
dings trained from the PHS system can generate comparable
quality and speaker similarity to the speaker-dependent model
trained solely on the target voice. ii) Applying meta-learning
to Tacotron can effectively learn a representation of an unseen
speaker. iii) For low quality public recordings, the adaptation
based on the multi-speaker corpus can generate a cleaner target
voice in comparison with the speaker-dependent model.
Index Terms: speech synthesis, speaker adaptation, multi-
speaker training, meta-learning

1. Introduction
Recent advancements in neural TTS systems, which are fully
based on end-to-end (E2E) models [1, 2, 3, 4, 5, 6, 7, 8],
can generate high-quality speech with natural prosody. These
approaches mainly focus on clean and noise-free recordings,
which generally require a large amount of studio-recorded
speech by a professional talent. We investigate whether we
can leverage the E2E model capabilities to create target voices
with various personalities and accents. There are a number
of publicly-available datasets from TV shows, news and other
sources [9]. These corpora of under-utilized recordings can be
used to create various identities and celebrity voices.

Many existing works [10, 11] have used audiobooks as the
training corpus, however, it is much more challenging to utilize
low quality public recordings. The drawback of harnessing such
data is three-fold: 1) Voices extracted from such datasets are of-
ten casual and conversational [12], as opposed to professionally
produced content or audiobooks. Disfluencies, repetitions, and
pauses are frequent and some utterances are challenging to un-
derstand and transcribe phonetically. 2) Voices extracted from
TV shows or interviews are often recorded in uncontrolled en-
vironments. Most recordings contain ambient noise and rever-
beration. It is difficult to assess how robust a typical neural
TTS system will be with such data. 3) Extracted voices may
contain an expressive style for which no prosodic annotation is
available. The average pitch and duration are more variable,

which makes the synthesis using conversational speech more
challenging. Although neural TTS systems are capable of gen-
erating high-quality speech [2, 1], few study [13] has assessed
the impact of using such types of corpora for training. The
main goal of this work is to train a neural TTS system on public
recordings, which is limited in size, noisy, and of low quality,
to generate high-quality TTS output. Preprocessing this type of
dataset is an expensive process, particularly when transcriptions
are not available. Therefore, we further address how to generate
a target voice with limited data. More specifically, we propose
and compare adaptation methods for neural TTS to understand
which generates the most natural and similar voice compared to
the target speaker.

For the low-resource setting for neural TTS, [14] presents
a meta-learning method applied to Wavenet. The task-
independent parameters for mapping text-to-speech are first
learned by the network, then the target speaker data is applied to
fine-tune the Wavenet model and the speaker embedding. How-
ever, the output waveform is still predicted from hand-designed
linguistic features and fundamental frequency, which require
significant domain expertise and may introduce additional er-
rors. Direct application of meta-learning to Tacotron has yet
to be tested. We do not have a corresponding clean version
of the data to train a separate network for denoising the tar-
get voice. Furthermore, noise conditions in actual low quality
public recordings are more complicated. Adding an additional
encoder to decrease the noise [15] makes the network difficult
to optimize. [16] has shown the effectiveness of decoupling the
speaker encoder from speech synthesis by training a speaker
verification model. However, the authors show the difficulty in
generating high-similarity voices for unseen speakers. All those
experiments are conducted on corpora where written transcrip-
tions are available. In our case, the task is more challenging
since the data contains variable speaking styles, mismatched
background conditions, and content significantly different from
that in the training set.

To address all the issues mentioned above, we first train a
neural-TTS system on a single speaker whose material is col-
lected from a set of conversational interviews. Next, we pro-
pose various methods for adaptation. We introduce two differ-
ent speaker encoders to extract a speaker representation. The
first is based on a look-up table and the second uses a dense
speaker verification model trained for PHS. We further propose
applying meta-learning to a Tacotron system with three differ-
ent approaches for the new speaker. Data cleaning may boost
the performance of a speaker-dependent model using the entire
19 hours of recordings. However, it is not a focus for this paper.

This paper is organized as follows: We first introduce our
neural TTS frontend and backend in Section 2. Various adapta-
tion methods and proposed systems are explained in Section 3.
Experiments and results are shown in Section 4. The discussion
and conclusions are listed in Section 5.
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Figure 1: Neural TTS baseline

2. Baseline description
2.1. System structure

Compared to the unit selection system presented in [17], our
neural TTS system is capable of generating natural speech qual-
ity with high flexibility [18, 16, 14, 19, 20]. The front-end sys-
tem is based on Tacotron [1], where the Mel-spectrum is pre-
dicted from phoneme sequences and the waveform is generated
by the neural vocoder in the backend. The input is text, which
first undergoes text normalization and Grapheme-to-Phoneme
conversion [21, 17, 22]. The Tacotron itself is an encoder-
decoder with an attention network [4] with zoneout regular-
ization [23] and location-sensitive attention [24]. For speaker-
dependent training, only the phoneme input is converted into
hidden units, and the acoustic output is predicted from the auto-
regressive decoder. The output Mel-spectrum is a block of 2
frames computed from a 25 ms window with a 10 ms shift. For
the backend, we use a modified Wavenet architecture [2] that,
instead of linguistic features and fundamental frequency, uses
the Mel-spectrum as input to predict time-domain samples [1].
The architecture is shown in Figure 1.

3. Adaptation systems
To generate the voice of the target speaker with a small amount
of training data, a multi-speaker Tacotron is utilized in [18,
14, 19, 16, 3]. The main difference compared to the baseline
Tacotron described in Section 2 is that an additional speaker en-
coder is added to explicitly model the speaker’s identity. The
auto-regressive decoder is trained to encode the concatenation
of the embeddings obtained from the phoneme encoder and the
embeddings extracted with the speaker encoder.

3.1. Speaker encoder

Speaker encoder has been widely used in the multi-speaker
generative model for capturing the representation from target
speaker such as speaker characteristics, speaking style and ac-
cent. In order to retrieve these characteristics, a known ap-
proach is to use a speaker identifier and repeat it for the entire
input text followed by a look-up table [25, 26, 19]. The con-
catenation of the speaker embedding and the phoneme encoder
output is used as input for the attention layer. To further dis-

Table 1: Different speaker embeddings and adaptation methods
for Tacotron (When there is no meta-learning, target voice and
other speakers are trained at the same time. Otherwise, we pre-
tain on other speakers and then fine-tune the model to the target
voice)

ID Speaker embedding meta-learning
onehot lookup table embedding no

sv speaker verification output no
onehot-pf lookup table embedding yes

sv-pf speaker verification system yes
noid-pf none yes

tinguish the speaker, [16, 18, 27] have introduced a trainable
speaker encoder to map the speaker’s voice into a latent speaker
space. Instead of using speaker ID, the speech is used to ex-
tract embeddings as a fixed dimensional vector in the speaker
encoder, which can be either optimized together with the syn-
thesis training [18] or learned from a pretrained speaker ver-
ification network [16]. The advantage of the latter method is
that no transcribed audio is needed to train the speaker en-
coder [16]. Here, we used the speaker verification system intro-
duced in [28], which is used for PHS [29] but can also extract
speaker information independently of the variable linguistic in-
puts. Since the speaker discriminative transform used in PHS
models contains Siri requests, which are short and offer less text
variations compared to the one presented in the traditional TTS
training set, the network may not be able to capture accurate
speaker identities from training utterances. So our first question
is whether the speaker verification network for PHS can be used
as a speaker encoder?

To answer the question, we use a LSTM system which maps
a sequence of MFCCs extracted from the speech utterance into
a speaker embedding vector via our pretrained speaker encoder
[28]. The parameters of the speaker encoder are optimized via a
curriculum learning procedure [30] to improve robustness under
various acoustic conditions and text variability. The input for
the LSTM is 20 dimensional MFCCs extracted from the wave-
form. The layout consists of a recurrent layer containing 512
LSTM units followed by a fully connected linear layer with 128
units. Embeddings from the linear layer are calculated for ev-
ery utterance from the corpus, and then averaged to obtain the
final speaker embeddings. A dataset containing more than 18k
English speakers is used to train the encoder.

3.2. Meta-learning

An advantage of using an auxiliary speaker encoder is that the
system is able to generate a voice for unseen speakers without
retraining the Tacotron model. However, compared to the tar-
get voice, the speaker similarity from the synthesized speech
drops significantly especially for unseen speakers from a differ-
ent dataset [16]. Here we propose several ways to use meta-
learning [31] to first train a multi-speaker Tacotron, and then
adapt it on the target speaker. In [14], during adaptation, a target
speaker voice, linguistic features, and corresponding fundamen-
tal frequency are used as input to adapt the speaker embedding
vector and Wavenet parameters. However for Tacotron, funda-
mental frequency is not used as input, and the speaker encoder
may not be well-adapted in the fine-tuning process. Therefore,
our second question is whether meta-learning can be applied to
Tacotron, and if so, how should the system be designed.

Based on the speaker encoder type, we present three ways
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to train a multi-speaker Tacotron with fine-tuning. We can first
pretrain a multi-speaker Tacotron using a lookup table (one-
hot in Table 1) based on a large database. In the fine-tuning
stage, supposing M target , Mpredict, and Ltarget are the tar-
get, predicted Mel-spectrum, and linguistic features for the tar-
get voice, our aim is to minimize the difference between target
and predicted speaker Mel-spectrum by optimizing the weights
of both the speaker embedding W onehot

speaker and Tacotron param-
eters WTacotron (onehot-pf with pretraining-fine-tuning (pf )),

minL{f(M target,Mpredict)|Ltarget;W onehot
speaker,WTacotron}.

Similar to Section 3.1, we can also apply the speaker verifica-
tion system for PHS to predict the speaker reference vector Esv .
As this speaker encoder is trained separately from Tacotron,
during the adaptation period, only WTacotron needs to be re-
fined on the target speaker (sv-pf ),

minL{f(M target,Mpredict)|Ltarget, Esv;WTacotron}.

By investigating the meta-learning process, we find in the case
of onehot-pf, both the speaker encoder and Tacotron weights
are learned in the pretraining process. Based on the findings re-
ported in [14, 18], by optimizing the weights for the speaker en-
coder and the entire synthesis model, the system performs better
than when only the speaker encoder is adapted. In other words,
instead of treating the weights from the speaker encoder and
the synthesis model as task-dependent and task-independent
parameters respectively, we have optimized the entire model
weights for the two tasks simultaneously. Under such con-
ditions, our hypothesis is that Tacotron without a speaker en-
coder can also perform well in the meta-learning process. Thus,
our third question is: is a speaker encoder still needed in the
pretraining-fine-tuning process for Tacotron?

In the pretraining process, we first train a multi-speaker
Tacotron, without conditioning on speaker identity, and use only
linguistic features as input. This can be viewed as our first step
toward learning a general text-to-speech mapping. During the
fine-tuning stage, we adapt the Tacotron weights learned from
the multi-speaker dataset to the target speaker. The difference
between adaptation methods are shown in Table 1. Architec-
tures for the proposed multi-speaker Tacotron are shown in Fig-
ure 2. Our new optimization function becomes (noid-pf ):

minL{f(M target,Mpredict)|Ltarget;WTacotron}.

4. Experiments
4.1. Corpus

Our target recordings are based on a set of spontaneous inter-
views taken over the course of 3 days, and therefore qualities
such as data volume and background noise are not consistent,
due to varying configurations and microphone locations. There
are multiple voices in the recording, and one male speaker with
an American English accent is selected as our target speaker in
this preliminary investigation1. Corresponding text, punctua-
tion, and lexicon are manually transcribed by linguists. Overall,
19 hours of data without overlapping speakers were collected at
a sampling frequency of 16kHz and then denoised. The corpus

1Sound samples: https://qsvoice.github.io/samples.html

Figure 2: Different multi-speaker systems for meta-learning
((a) speaker encoder based on the embedding lookup table;
(b) speaker encoder based on the speaker verification model
trained separately; (c) no speaker encoder)

contains a high speaking rate and energy variance with stammer
and hesitations. 1.5 hours of speech with a stable performance
(e.g., speaking style, rate and etc.) are manually selected from
the 19 hours for the adaptation experiment. 100 speakers from
the VCTK corpus [32] are used for training the multi-speaker
system. The whole corpus consists of around 40 hours of audio,
with each speaker reading the same script for about 20 minutes
each.

4.2. Evaluations

To understand how the neural TTS system performs for a tar-
get voice based on low quality public recordings, we first train
a speaker-dependent Tacotron and Wavenet with the entire 19
hours of the single speaker dataset. To evaluate the influence
of the quality of the corpus on neural TTS, we also choose a
separate 13 hour high-quality Siri corpus from a professional
English male talent [33]. This corpus is used to build a speaker-
dependent model with the same configuration. 20 test sentences
are generated for each system and each sentence is evaluated
by 30 native listeners. Synthesized voices are evaluated from
three aspects: 1) the speech naturalness Mean Opinion Score
(MOS) (from 1 to 5) [34] 2) speaker similarity MOS (from 1 to
5) compared to the target speaker voice 3) Signal Noise Ratio
(SNR). Table 2 shows results for the natural target voice (nat-
ural target), generated speaker-dependent Siri voice (gen siri),
and generated speaker-dependent target voice (gen target).

We can see that our neural TTS system based on the tradi-
tional Siri corpus (gen siri) achieves a naturalness MOS score
of 4.25, which shows the ability of the system to generate high-
quality speech. However, when we switch the training corpus
to low quality public recordings with more data (gen target),
even under the same setup, the naturalness MOS drops signif-
icantly to 3.56. The target dataset was recorded in an uncon-
trolled environment, the SNR for the denoised natural voice
(natural target) is around 40.5 dB, which is lower than the gen-
erated Siri voice (61.9 dB2). Furthermore, the test shows that
the neural TTS is not robust when training on the noisy cor-

2SNR from natural Siri sentences is around the same range.

26



Table 2: Naturalness, similarity MOS with 95% confidence in-
terval and SNR (mean with variance) for the natural and synthe-
sized voice (second and third rows are trained under the same
configuration)

System Naturalness Similarity SNR (dB)
natural target 4.32 ± 0.04 – 40.5 ± 4.2

gen siri 4.25 ± 0.04 1.26 ± 0.04 61.9 ± 2.1
gen target 3.56 ± 0.04 3.77 ± 0.04 35.2 ± 0.8

pus, and the SNR for the speaker-dependent model decreases to
35.2 dB for the target voice. We draw the conclusions that 1)
The performance of the neural TTS system is sensitive to the
training corpus type. 2) It is difficult to generate a high-quality
voice from low quality public recordings, and the neural TTS
system is not robust when trained on a noisy dataset. 3) Even
with a higher corpus size (19 hours), neural TTS trained on the
low-quality corpus does not perform as good as the one trained
on high-quality dataset (13 hours).

Next, we evaluate whether we can use adaptation to achieve
a similar or higher voice quality. To answer the first question of
whether the PHS-based speaker verification output can be used
to represent the speaker identity, we trained a multi-speaker
Tacotron using the output from the speaker encoder (sv-1.5h).
Both VCTK and the 1.5 hour target speaker’s voice are used
to train the frontend and backend (no speaker ID is used in
Wavenet [35, 36]). For comparison, a multi-speaker Tacotron
based on the lookup table trained on VCTK and 1.5 hour tar-
get voice is also tested (onehot-1.5h). From results in Table 3,
we can see that the sv-1.5h and onehot-1.5h system can gener-
ate a similar level of quality and similarity for the target voice
(MOS difference between onehot-1.5h and sv-1.5h is not statis-
tically significant, but gen target is statistically better than both
of them). This supports our first hypothesis. While the nat-
uralness and similarity MOS of adaptation systems decreases
compared to gen target, the mean SNR for generated samples
increases. This indicates that training the multi-speaker model
can boost the speech quality for target voices.

For the systems in Table 3, to synthesize a new target
speaker’s voice, a multi-speaker model based on VCTK and the
target speaker needs to be trained. Therefore, we next address
the second and third questions: can meta-learning be applied to
Tacotron in the case of an unseen speaker and can it generate a
good quality voice without a speaker encoder? For the pretrain-
ing process, three different multi-speaker Tacotron systems are
trained: 1) without conditioning on the speaker encoder (noid-
pf-1.5h), 2) based on the lookup table (onehot-pf-1.5h), and 3)
based on the verification output as a speaker reference (sv-pf-
1.5h). Only the VCTK database is utilized in this stage. Next,
the target speaker’s voice is utilized as an unseen speaker to
fine-tune the entire system based on the pretrained model.

Results are shown in Table 4. Surprisingly, with meta-
learning, SNR values from all adaptation systems are further in-
creased compared to the ones in Table 3. For system onehot-pf-
1.5h and noid-pf-1.5h, SNR is improved almost 3 dB. In terms
of speech naturalness, sv-pf-1.5h generates the highest qual-
ity, but it is not statistically significant compared with system
gen target, onehot-pf-1.5h and noid-pf-1.5h. This indicates that
during the fine-tuning period, Tacotron weights are not only ca-
pable of learning the general text-to-speech mapping, but they
are also adjusted to learn from the target’s voice identity. Mean-
while, system gen target and sv-pf-1.5h can generate a voice

Table 3: Naturalness, similarity MOS with 95% confidence in-
terval and SNR (mean with variance) for the synthesized tar-
get speaker’s voice from multi-speaker model tacotron based
on VCTK and target voice 1.5 hour data.

System Naturalness Similarity SNR (dB)
onehot-1.5h 3.21 ± 0.04 3.53 ± 0.06 36.0 ± 1.1

sv-1.5h 3.12 ± 0.05 3.35 ± 0.06 35.5 ± 0.8

Table 4: Naturalness, similarity MOS with 95% confidence in-
terval and SNR (mean with variance) for the synthesized tar-
get speaker’s voice from 1.5 hour target voice based on meta-
learning.

System Naturalness Similarity SNR (dB)
onehot-pf-1.5h 3.52 ± 0.04 3.52 ± 0.06 38.0 ± 0.7

sv-pf-1.5h 3.60 ± 0.04 3.69 ± 0.06 36.5 ± 0.5
noid-pf-1.5h 3.56 ± 0.04 3.60 ± 0.06 38.2 ± 0.7

with higher speaker similarity compared to system noid-pf-1.5h
and onehot-pf-1.5h. Results in Table 4 are promising, as sys-
tem sv-pf-1.5h has achieved comparable speech naturalness and
similarity as the system trained on the whole dataset. The noise
in the generated voices has been improved while no additional
noise encoders have been applied in our dataset. We would
like to investigate the capability of the proposed method for
higher noise conditions and test the system’s performance on
zero-short learning as a next step.

5. Discussion and conclusions
Although a large number of neural-based TTS systems have
been proposed, few studies have measured the performance af-
ter training on recordings from low quality public recordings.
We have shown it is a challenge to train a neural-based TTS
system with this data even with a standard-sized corpus. There-
fore, we use adaptation with a small amount of target voice ma-
terial. Systems with various adaptation methods and configura-
tions were proposed. We first introduce that using embeddings
from a dense speaker verification model used for PHS data can
generate quality comparable to the system based on a lookup
table. Both systems can generate a less noisy voice compared
to the network which is trained only on target recordings. Three
approaches for multi-speaker systems with pretraining and fine-
tuning are introduced to further improve the performance of
adaptation systems. We prove that meta-learning is effective
to learn speaker parameters of unseen characters for Tacotron
by pretraining the model on a large multi-speaker database. Re-
sults show that by using a significantly smaller number of target
voice recordings, the proposed system based on embeddings ex-
tracted from the PHS system can generate comparable quality
and speaker similarity to the speaker-dependent model trained
solely on the target voice. For future work, we will focus on de-
signing early stopping in the fine-tuning on zero-short learning
and other methods for corpus denoising.
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